Full title:

Accuracy of Intraoral Scanners for Recording the Denture Bearing Areas: A Systematic Review

Running title: Intraoral Scanner Accuracy In Denture Bearing Area

Authors

Vanya Rasaie DDS, MSc¹, Jaafar Abduo BDS, DClinDent, PhD, MRACDS (Pros)², Saloumeh Hashemi DDS,MSc²

- 1. Department of Prosthodontics, Dental school, Ilam University of Medical Sciences, Ilam, Iran
- 2. Department of Prosthodontics, Melbourne Dental School, Melbourne University, Melbourne, Australia

Correspondence: Vanya Rasaie

Address: Ilam Dental School, Pazhoohesh Blvd, Banganjab, Ilam, Iran Email: <u>Rasaie-v@medilam.ac.ir</u>.

Conflict of interest: None declared

Accepted date January 29, 2021

Abstract

Purpose: To systematically review clinical and laboratory studies that investigated the accuracy of intraoral scanners in recording denture bearing areas.

Materials and Methods: Electronic and manual searches were conducted to identify all the available clinical and laboratory studies reporting the accuracy of digital impressions for recording denture related soft tissues. After the application of predetermined inclusion and exclusion criteria, the final list of articles was reviewed to meet the objective of this study.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/jopr.13345</u>.

This article is protected by copyright. All rights reserved.

Results: The inclusion criteria were met by 18 studies out of which 8 were clinical and the rest were laboratory investigations. The eligible studies assessed the accuracy of intraoral scanners in recording both the denture supporting structures and the peripheral mobile tissues. The accuracy results were different among the various intraoral scanners. Likewise, the effect of several influencing factors, such as artificial markers, scanner head size, scanning strategy, and the operator's experience, were evaluated.

Conclusion: While the accuracy of intraoral scanners was comparable to the conventional techniques in recording bony structures with attached mucosa, they were not capable of accurately registering the mobile tissues. In addition, factors such as presence of a marker, larger scanner head size and specific scanning techniques appeared to improve the accuracy of the digital impression.

Keywords: Direct digital impression, removable prosthesis, optical scanner, trueness, precision

Several impression materials and methods have been advocated for the definitive impression in removable prosthodontics. While a long track record of proven accuracy is available for the conventional methods,¹ the accurate result still demands careful material handling. The potential errors throughout the procedure, such as excessive or insufficient pressure during impression making, improper sterilization procedure, mechanical undercut and elastic deformation, could affect the accuracy of the definitive impression.^{2,3} Additionally, the innate material limitations, including volumetric changes of the impression material and the stone model, are inevitable.⁴ The advent of direct digital impression has eliminated many of these shortcomings. Further, it improves the communication between the patient, clinician, and dental laboratory. Real-time visualization provides the benefit of immediate evaluation of the impression adequacy. Permanent storage of the data, ease of transfer, and reduced patient discomfort during impression making are clear advantages of the digital impression over the conventional methods.⁵ The majority of the studies that investigated the

This article is protected by copyright. All rights reserved.

accuracy of intraoral scanners (IOS) focused on capturing the teeth and implants with promising outcomes.6,7

Accepted Article In recent years, there has been an increased interest in digital removable dentures. Although the Materials and methods

current concepts of digital dentures prominently involve the laboratory procedures,^{8,9} integration of the IOS in the workflow provides the opportunity for full digitization of denture fabrication. However, there are challenges around the direct digital impression of edentulous jaws. Oral mucosa represents a smooth translucent surface with simple geometry that is covered entirely by saliva. Such characteristics could raise cumulative errors in the stitching process.¹⁰ Additionally, there are clinical difficulties in recording functional depth and width of sulci, access to the posterior areas,⁷ and the inability to record the tissues under selective pressure.¹¹ While some authors reported the feasibility of direct digital impressions as the definitive imprint of edentulous jaws,^{12,13} a question remains as to how accurate the IOSs are in recording the denture bearing areas. The present systematic review aimed to investigate the accuracy of IOS in recording the denture-related mucosa.

This systematic review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The PICO framework was used to form the following search strategy: Population: denture bearing area and soft tissue, Intervention: IOS technique, Comparison: a reference model/ alternative impression techniques, Outcome: accuracy.

Search strategy

The main formulated search strategy was performed in the PubMed (MEDLINE) database (Table 1). Additionally, individual search strategies were developed using the main search as the reference and applied in the EMBASE, Scopus, and Cochrane Central Register of Controlled Trials databases. The searches were conducted in October 2020 and updated in November 2020. A reference manager software program (Endnote X9, Clarivate Analytics, Philadelphia, PA) was used to eliminate duplicate articles from different searches.

With regard to inclusion criteria, clinical and laboratory studies with control groups that investigated the accuracy of IOS for scanning denture bearing soft tissue and written in English language were included. Conversely, reviews, letters, case reports/series, studies in which merely the dental arch or implant component scanning were involved, or scanned the soft tissue other than the denture bearing area, or studies in which the accuracy could not be determined, or involved fit evaluation of the prosthesis, were not considered for analysis.

Selection of studies

Two independent reviewers (V.R., S.H.) participated from the first phase of study selection by choosing articles based on the information provided in the title and abstracts. Following this, abstracts of all titles, agreed on by both investigators, were obtained for full-text analysis and matching against inclusion criteria. In case of disagreement, a third reviewer (J.A.) was consulted. Finally, articles considered eligible for review were selected. Further, a supplemental hand search was conducted through the reference lists of the included studies. The risk of bias assessment was performed by the Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS).¹⁵ Only relevant questions to the eligible studies were selected for scoring (n =13) (Table 2). "Yes" answers scored 1 and "no" or "unclear" answers scored 0. The highest score (13) indicated lower risk of bias.

Results

A total of 315 articles were obtained from the initial electronic search, which was reduced to 286 after removing the duplicate reports. Subsequent to study selection based on title and abstract relevance, 37 articles were identified to be analyzed by full-text. After the implementation of the exclusion criteria, 18 articles were identified to be eligible for final reporting. The supplemental hand search did not result in any additional articles (Figure 1). According to the investigated denture bearing area, the eligible studies were organized in 4 groups: completely edentulous arch studies, partially edentulous arch studies, and palatal area studies.

Accuracy variables and evaluation methods

The accuracy data were extracted from the included articles. The following methods were implemented by the studies:

a) Dimensional measurement: Out of the 18 studies that satisfied the inclusion criteria, 1 measured the distance between markers on a physical model and compared it to the distance between the similar markers on its virtual counterpart produced by the IOS.¹⁶

b) Superimposition accuracy: The superimposition accuracy was based on the definition of accuracy by ISO-5725-1,¹⁷ which is determined by trueness and precision. Trueness is defined as the closeness of the test object to the actual reference object, and precision represents the similarity between the different test objects. From the 18 studies, 17 of them used the superimposition method to measure the congruence between the reference and the test group 3D data (trueness) and/or the congruence of the 3D data within each test group (precision).¹⁸⁻³⁴ To do so, 11 studies obtained the reference 3D data through a laboratory scanner,^{18,19,21,25-32} 3 used an industrial scanner,^{20,22,34} and 1 used the same IOS employed to capture the direct digital impression.²³ The virtual models were superimposed using the best fit algorithm of a 3D software. To measure the accuracy, the discrepancy between the models were quantified. The less the value, the greater the accuracy.

c) Qualitative evaluation: Out of the 17 studies that used the superimposition method, 14 described the pattern of the positive and negative differences between the IOS-generated virtual model and the reference 3D data by visualizing through a color map.^{18,20-25,27-30,32-34}

Completely edentulous arch studies

A total of 9 articles evaluated the accuracy of IOSs in completely edentulous arches (Table 3).^{16,21,23,25,27,29,32-34} Five studies were clinical experiments^{23,25,27,29,32} and 4 were laboratory investigations.^{16,21} None of the clinical studies included participants with severe bony undercuts or severely resorbed residual ridges. The majority of the studies included accuracy evaluation of Trios 3 (TR3) (3Shape) (n = 6).^{16,23,25,32-34} This was followed by iTero (IT) (Align Technology) (n=2),^{16,21} Lava C.O.S (LC) (3M ESPE) (n=2),^{21,29} True Definition (TD) (3M ESPE) (n=2),^{29,33} Cerec Bluecam (CB)/ Cerec Omnicam (CO) (Dentsply Sirona) (n=1+2),^{16,21,33} Planmeca Emerald (PE) (Planmeca)

(n=2),^{16,33} CS3500 /CS3600 (Carestream) (n=1+1),^{16,27} Zfx Intrascan (ZFX) (MHT Italy) (n=1),²¹ Straumann Cares IOS (DW) (Straumann) (n=1),³³ and Aadva iOS100 (AD) (GC) (n=1).³³ Four studies evaluated more than one IOS.^{16,21,29,33}

The dimensional measurement study calculated the distance between 5 markers distributed over an edentulous mandibular arch. The measurements were evaluated in the short arch (pairwise comparison between markers) and complete arch (cross-arch comparison between markers) patterns. Five different IOSs (CO, IT, PE, CS3600, TR3) were used in the study. For the complete arch measurements on the edentulous scan, PE and CO were shown to have the lowest and highest trueness values, respectively. The short arch measurements revealed the lowest trueness values for IT and the highest for CS3600. The study reported a clear effect of the scan distance on the 3D data accuracy, where the greater scan distance is associated with more errors.¹⁶

In a laboratory study, Patzelt et al. reported significantly different levels of accuracy by various IOSs (CB, IT, LC, ZFX). They found the smallest and most consistent distance errors for the LC, and the largest and least consistent for the CB. The accuracy of scans was not different in the maxilla and the mandible. According to the qualitative evaluations, the highest deviations and digital mismatches were reported in the palatal region. However, the vestibular areas were captured sufficiently, due to the fact that no mobility was simulated.²¹ The clinical studies investigated the accuracy of intraoral scanners in recording both the denture supporting tissues and the denture peripheral seal zone.^{23,25,29,32} D'Arienzo et al. reported a difference of more than 500 µm in only 10% of the scanned maxillary arches in comparison to the stone models. The color map analysis revealed deviations particularly in the soft palate, buccal and labial vestibule.²⁵ Jung et al. limited the evaluation of the IOS accuracy to the denture supporting area in both edentulous jaws. The vestibular tissue was excluded from the data analysis due to its extreme mobility. The comparison of the mean differences between the IOS and the stone model revealed more congruence in the mandible rather than the maxilla. Although not statistically significant, the soft palate showed the greatest distortion. A difference of 300 µm was described as the acceptable threshold value. Based on this, the IOS accuracy in recording denture supporting areas in both arches was considered satisfactory.²⁷ In the same study, the qualitative evaluations revealed more pressed tissue in the posterior area for the IOS. Chebib et al. evaluated both the mobile and attached denture relevant mucosa in maxilla. They reported that the peripheral

border was either missing or difficult to interpret in the direct scans. Thus, they found inferior peripheral border trueness compared to the polyvinyl siloxane (PVS) and zinc oxide eugenol (ZOE)relined PVS impressions. The impression of bony structures (residual ridge and midpalatal suture), as well as posterior palatal seal area, was recorded adequately by all impression techniques with no meaningful differences. Analysis of the color map data showed almost half of the peripheral borders with positive (overextended sulci) and the other half with negative (underextended sulci) errors.³² Lo Russo et al. found an improvement in trueness of digital scans by 10 fold when the mobile peripherial tissues were cropped from the full scans of the edentulous maxilla and mandible. However, the mean distance between the 3D data obtained from polysulfide impression and IOS was still significantly different after trimming scans of the maxilla.²³ Hack et al. found deviations of \geq 500 µm in the soft palate, sublingual, and vestibular areas. Likewise, most uncaptured data reported were in the maxillary tuberosity and the mobile tissues. Conversely, small deviations were reported in areas with attached mucosa (alveolar ridge and hard palate). Significantly better accuracy was reported for the maxillary scans. Greater differences were found when the IOS-generated data were compared to the impression rather than the stone model. Moreover, no statistically significant difference was identified between the scans obtained from the two scanners used in the study (LC and TD).²⁹

Osnes et al. investigated the precision of 6 different IOSs (TD, PE, CO, DW, TR3, AD) using the following two measures in vitro. The mean deviations over the full surface and the unsigned median error over the poorest 1% of the surface (upper-bound deviation), was measured to determine whether this data was likely to be scanner noise or true error with great clinical relevance. The largest mean deviation was associated with DW and PE, while AD displayed the lowest and most consistent values. However, all the error values were below 100 µm. On the other hand, the upper-bound deviations for PE and DW exceeded the 300 µm, which was designated as the clinically relevant threshold value. TR3, AD, CO, and TD all produced clinically acceptable scans according to both measures. Additionally, the study reported that much less than the greatest 0.5% of the data appeared to be spurious.³³ Zarone et al. evaluated the influence of the palatal irregularities (rugae) and the scanning strategy on the accuracy of IOS. Similar maxillary models with different surface irregularities (wrinkled and smooth) were scanned with three different scanning paths including the palatobuccal technique (PB), The S-shape technique (SS), and the buccopalatal technique (BP).

They reported no significant effect of the scanning strategy in the smooth model. However, the wrinkled model was digitized more accurately with BP technique. The overall results revealed higher accuracy for smooth model which was attributed to the software calculation method. In this regard, the software calculated the SD value of the global displacement between the whole superimposed surfaces. For this reason, the calculated mean value of errors was influenced by the area of the palatal rugae. The qualitative analysis showed outward and inward displacements with values less than 400 µm at the palatal region, buccal vestibule, and posterior peripheral borders.³⁴

Partially edentulous arch studies

A total of 3 laboratory studies evaluated the IOS accuracy in the partially edentulous arches (Table 4).^{24,26,28} All of the studies evaluated CS3500 and CS3600 (n=2+1).^{24,26,28} The accuracy of CO,²⁶ TR3,²⁶ and i500 (Medit)²⁴ were investigated as well. Two studies evaluated more than one IOS.^{24,26} Kim et al. used an external object to add a feature on a tooth-borne edentulous span. Unlike the trueness, presence of the marker showed a significant impact on improving the precision of the obtained 3D data. The study reported a significant influence of the type of scanner on the precision, whether the marker was present or not. In this regard, TR3 showed better results than CS3500. The CO was excluded from the analysis as there were registration problems in the absence of the marker. Moreover, they showed that the presence of an artificial marker reduced the scanning time due to fewer errors in the recording process. However, according to the increased number of captured images, the software calculation time and hence the total impression procedure increased compared to the time without the marker in place.²⁶ On stone model, Hayama et al.compared the accuracy of the conventional method and IOS with different scanner head sizes in the partially edentulous mandible. They found significantly superior trueness for the large IOS head in the full arch scan and solely mucosal area evaluations. While this finding was true for both the Kennedy class I and III mandibular models, the small head size showed significantly better trueness than the conventional method only in the mucosal area of the class III model. Conversely, for both IOS head sizes, precision was inferior to the conventional method. Comparison of the two scanner head sizes revealed better trueness and precision for the large IOS head with significantly fewer numbers of the scanned image for the full arch scan.²⁸ Lee et al. found that the length and distribution of missing teeth in the partially edentulous arch can affect the accuracy of the full arch digital scan. In this sense, inferior precision was reported with an increase in the number of missing teeth. This was irrespective of the type of IOS (CS3600 and i500). ²⁴

Completely and partially edentulous arch studies

A total of 2 laboratory studies evaluated the accuracy of digital scans in partially and fully edentulous arches in comparison to reference models (Table 5).^{19,20} Tasaka et al. investigated the trueness of TR2 scans in certain areas of an edentulous maxilla and a partially edentulous mandibular model during the evaluation of the inter-operator validity. Their results revealed a significant inter-operator difference in the maxilla only. Although the overall results indicated satisfactory trueness, the longer free end in the mandible and the palatal area showed greater deviations.¹⁹ The other study showed a significant influence of the type of edentulism and the operator's experience on the scan time, trueness, and precision. Completely and partially edentulous maxillary and mandibular models were scanned with Primescan (PR) (Dentsply Sirona). The results for fully edentulous models revealed significantly superior trueness for the scans of the mandibular arch by the inexperienced operator. For the partially edentulous models, the largest deviations were found in the edentulous sites of the anterior maxilla and the free end of the mandible. Regarding the precision, a significantly better result was found for the scans of the edentulous maxillary model by the inexperienced operator. In general, the accuracy results were superior for the partially edentulous models than completely edentulous models. Moreover, statistical analysis revealed a direct correlation between scanning duration and trueness, where the longer scanning duration was associated with superior trueness.²⁰

Palatal area studies

Out of 4 studies that evaluated the IOS accuracy of the palatal area, 3 were clinical investigations and 1 was a laboratory experiment (Table 6).^{18,22,30,31} All of the clinical studies evaluated the accuracy of TR3.^{18,30,31} The region of interest in this group of studies was the hard palate in dentate arches of adult participants. Mennito et al. used a fresh cadaver maxilla as the study model and compared the 3D data obtained from 7 different IOSs and the conventional technique against the reference digital data produced by an industrial scanner. Since CO was unable to record the whole maxilla and the palatal area, it was excluded from the analysis. IT Element 2 showed the best trueness for recording the hard palate followed by TR3, IT Element 1, PE, CS3600, and Planscan (PS) (Planmeca). The

trueness of the 3D data produced by the stone model was inferior only to the IT Element 2 and TR3. However, none of these differences were statistically significant. Regarding the precision, no significant difference was found between the seven scanners and the conventional technique in recording the palatal mucosa.²² The effect of palatal width and height on the accuracy of the direct digital scan was assessed in a clinical investigation. The study reported that while there was no correlation between palatal trueness and arch width, deviations of palatal precision increased with increasing arch width. Regarding the palatal vault height, the study found no significant effect on the accuracy of the digital scans.³⁰ Deferm et al. evaluated the accuracy of IOS through assessments of the scans produced by two operators (experienced and inexperienced). Whereas the difference was not significant, IOS trueness showed fewer deviations for the inexperienced operator. Likewise, the mean absolute error (size measurement) and 90th percentile distance error between the digitized impression and the IOS model were not meaningful.³¹ Zhongpeng et al. evaluated the effect of the scanning strategy on the accuracy of the hard palate and palatal vault scans. Their scanning strategies involved increasing the scanning scope or decreasing scanning scope. They reported significant differences in hard palate trueness between the two groups. Higher accuracy was attributed to the decreasing scanning scope when the palatal scan initiated at the palatal side of the posterior teeth in an inverted U-shaped manner toward the posterior teeth on the other side. However, the impact of the different scanning sequences was not notable in the palatal vault.¹⁸

Discussion

When scanning an edentulous mucosa is considered, studies showed that the accuracy was influenced by the presence of an artificial marker,²⁶ distribution and length of the edentulous area,^{19,24} operator's experience,^{20,31} IOS system characteristics including the head size,^{16,20-22,26,28,29,33} soft tissue characteristics (flexibility, mobility, dimension),^{23,25,27,29-32} and the scanning strategy.^{18,34} Accuracy reports varied among studies according to their different methodologies, evaluated area of interest, and scanning condition. Moreover, the designated reference data was shown to affect accuracy values.²⁹ The mobile and flexible soft tissues exhibited the highest discrepancies, while the bony structures with attached mucosa showed lower deviations. Nonetheless, the intended clinical application will define the level of required accuracy. The clinically relevant threshold values were

varied among the included studies (300 and 500 μ m).^{18,27,29,33} Yet, in clinical practice, errors of more than 500 μ m cannot be considered negligible for the fabrication of a removable denture. In general, most scanners had accuracy values that were acceptable for recording the residual ridge and palate.

The comparison between digital scans of the complete edentulous maxilla and mandible revealed lower accuracy for the mandible when considering both the denture supporting tissues and the peripheral seal zone.^{23,29} However, the lower accuracy was associated with the maxilla when the mobile vestibular tissues were excluded from evaluations.^{23,27} In addition, the peripheral seal zone was the region with the highest deviations and missed data.^{29,32} These findings from the complete arch studies along with results from studies that evaluated the length of edentulism,^{16,19,24} can lead to two conclusions. Firstly, the importance of the tissue movement and scanned area on the accuracy of direct digital scans. Secondly, the effect of tissue movement that outweighs the role of the scan area. When considering the whole edentulous arches, lower accuracy was related to the mandible with less denture bearing surface area but more mobile tissues with greater amount of movement (tongue and floor of the mouth). Furthermore, saliva can be controlled more easily in the maxilla. On the other hand, denture congruence with the bearing area is a crucial factor for good retention in a complete denture, or partial dentures with minimum teeth support.³⁵ Better retention improves the masticatory performance, speaking ability, and patients' quality of life.³⁶ Therefore achieving maximum denture extension up to the limits of tissue movements should be one of the main goals in removable denture fabrication. However, current IOS technologies are incapable of registering such movements. In general, laboratory studies showed promising results after comparing the IOS and conventional impression/stone model 3D data against the virtualized reference model.^{22,28} However, the in vitro outcomes cannot be easily interpreted to confirm the adequacy of IOS as the final impression for all scenarios of removable denture fabrication. Further, the IOS systems can register the soft tissue only in their mucostatic state, which leaves the implementation of relief and pressure to the later stage of the denture design.³⁷ Potentially, this might lead to more denture post-insertion sore spots and adjustments. In general, it can be assumed that when there are long or multiple spans of partial edentulism, or a fully edentulous arch, the IOS can be safely used as a preliminary impression in the removable denture fabrication process. However, the performance of the IOS as the preliminary

impression in a severely resorbed ridge or severe undercuts is not clear as such situations were investigated by the included studies.

Digital solutions in dentistry are developing at a high pace to improve the practicality and quality of prosthetic treatment. For example, the hardware and software updates have been shown to improve data acquisition methods and stitching processes. The accuracy of three generations of Cerec scanners was assessed in the laboratory studies. While Patzelt et al.²¹ showed accuracy values of more than 500 µm for CB in simulated edentulous maxillary and mandibular arches, Mennito et al and Kim et al reported the inability of CO in direct digitization of the palatal soft tissue and an edentulous span.^{22,26} Only after placement of an artificial marker CO was able to perform a complete scan.^{16,22} However, Osnes et al. did not report such a problem with the same device and its updated software and reported a precision of less than 300 µm.³³ Additionally, Schimmel et al. showed the viability of the complete and partial edentulous arch scan with the most recent hardware update (PR). This device indicated less than 500 µm errors in both types of complete and partially edentulous arches.²⁰

Concerning the interaction of scanning time and operator's experience, the results were consistent in the studies by Schimmel et al. and Deferm et al.^{20,31} In this regard, better accuracy was observed in a longer scanning time for the inexperienced operator. These studies investigated either the simulated models or the relatively dry palatal mucosa. Therefore, this result might not be clinically relevant if the presence of saliva was more significant or if more mobile tissues need to be scanned. Additionally, patient movement can negatively influence the accuracy of the results. Thus, with the current technologies of IOS, short scanning time and operator's experience might be an advantage for more accurate scans. The use of added marker was shown to be effective in reducing the scan time, and improving the reproducibility of the scans.²⁶ Practical methods for marking the edentulous mucosa in the clinical situation has been suggested in previous reports. Painting pressure indicating paste¹⁰ or composite spheres³⁸ were offered as a solution for the lack of topology in the edentulous mucosa.

While there is no recommendation from the manufacturers on the scanning strategy for the edentulous mucosa, 2 studies identified a significant effect of the scanning path on the accuracy of the scans.^{18,34} The consistent outcomes of these studies showed that decreasing scanning area leads to higher accuracy. This might benefit from reduced stitching error accumulation. Unlike the maxilla,

the lower arch form does not lend itself as readily to such a scanning strategy and there is a lack of information regarding an appropriate scanning technique in the mandible. Based on the present review, the literature is still lacking evidence on critical clinical variables such as time efficiency and a standard scanning sequence. Additionally, the majority of the studies were laboratory studies, which may reduce their clinical relevance. More clinical studies are needed to evaluate the clinical impact and long-term outcomes of the dentures fabricated by IOS systems.

Conclusion

Within the limitations of this systematic review, it appears that the accuracy of IOS can be comparable to the conventional impression if the ridges are firm and covered with attached mucosa. In the context of complete denture fabrication or situations where recording the tissue movement is crucial, the current IOS systems cannot be appropriate alternatives to the conventional techniques unless they were to be used for preliminary impression.

References

1. Jayaraman S, Singh BP, Ramanathan B, et al: Final-impression techniques and materials for making complete and removable partial dentures. Cochrane Database Syst Rev. 2018;4:CD012256.

2. Samet N, Shohat M, Livny A, et al: A clinical evaluation of fixed partial denture impressions. J Prosthet Dent. 2005;94:112-7.

3. Chen SY, Liang WM, Chen FN: Factors affecting the accuracy of elastometric impression materials. J Dent. 2004;32:603-9.

4. Stewardson DA: Trends in indirect dentistry: 5. Impression materials and techniques. Dent Update. 2005;32:374-6, 9-80, 82-4 passim.

5. Sawase T, Kuroshima S: The current clinical relevancy of intraoral scanners in implant dentistry. Dent Mater J. 2020;39:57-61.

6. Cicciù M, Fiorillo L, D'Amico C, et al: 3D Digital Impression Systems Compared with Traditional Techniques in Dentistry: A Recent Data Systematic Review. Materials (Basel). 2020;13.

7. Abduo J, Elseyoufi M: Accuracy of Intraoral Scanners: A Systematic Review of Influencing Factors. Eur J Prosthodont Restor Dent. 2018;26:101-21.

8. Campbell SD, Cooper L, Craddock H, et al: Removable partial dentures: The clinical need for innovation. J Prosthet Dent. 2017;118:273-80.

9. Nadim Z Baba BJG, Charles J Goodacre, Frauke Müller, et al: CAD/CAM Complete Denture Systems and Physical properties: A Review of the Literature. J Prosthodont. 2020;https://doi.org/10.1111/jopr.13243.

Lee JH: Improved digital impressions of edentulous areas. J Prosthet Dent. 2017;117:448-9.
 Lo Russo L, Salamini A: Single-arch digital removable complete denture: A workflow that

starts from the intraoral scan. J Prosthet Dent. 2018;120:20-4.

12. Kattadiyil MT, Mursic Z, AlRumaih H, et al: Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent. 2014;112:444-8.

13. Unkovskiy A, Wahl E, Zander AT, et al: Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. BMC Oral Health. 2019;19:46.

14. Liberati A, Altman DG, Tetzlaff J, et al: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62:e1-34.

15. Whiting P, Rutjes AW, Reitsma JB, et al: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.

16. Braian M, Wennerberg A: Trueness and precision of 5 intraoral scanners for scanning edentulous and dentate complete-arch mandibular casts: A comparative in vitro study. J Prosthet Dent. 2019;122:129-36 e2.

17. Standardization IOf. ISO 5725-1: 1994: Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 1: General Principles and Definitions: International Organization for Standardization; 1994.

18. Zhongpeng Y, Tianmin X, Ruoping J: Deviations in palatal region between indirect and direct digital models: an in vivo study. BMC Oral Health. 2019;19:66.

19. Tasaka A, Uekubo Y, Mitsui T, et al: Applying intraoral scanner to residual ridge in edentulous regions: in vitro evaluation of inter-operator validity to confirm trueness. BMC Oral Health. 2019;19:264.

20. Schimmel M, Akino N, Srinivasan M, et al: Accuracy of intraoral scanning in completely and partially edentulous maxillary and mandibular jaws: an in vitro analysis. Clin Oral Investig. 2020.

21. Patzelt SB, Vonau S, Stampf S, et al: Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc. 2013;144:914-20.

22. Mennito AS, Evans ZP, Nash J, et al: Evaluation of the trueness and precision of complete arch digital impressions on a human maxilla using seven different intraoral digital impression systems and a laboratory scanner. J Esthet Restor Dent. 2019;31:369-77.

23. Lo Russo L, Caradonna G, Troiano G, et al: Three-dimensional differences between intraoral scans and conventional impressions of edentulous jaws: A clinical study. J Prosthet Dent. 2020;123:264-8.

24. Lee JH, Yun JH, Han JS, et al: Repeatability of Intraoral Scanners for Complete Arch Scan of Partially Edentulous Dentitions: An In Vitro Study. J Clin Med. 2019;8.

25. L.F. D'Arienzo, A. D'Arienzo AB: Comparison of the suitability of intra-oral scanning with conventional impression of edentulous maxilla in vivo. A preliminary study. J Osseointegr 2018;10:115-20.

26. Kim JE, Amelya A, Shin Y, et al: Accuracy of intraoral digital impressions using an artificial landmark. J Prosthet Dent. 2017;117:755-61.

27. Jung S, Park C, Yang HS, et al: Comparison of different impression techniques for edentulous jaws using three-dimensional analysis. J Adv Prosthodont. 2019;11:179-86.

28. Hayama H, Fueki K, Wadachi J, et al: Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible. J Prosthodont Res. 2018;62:347-52.

29. Hack G, Liberman L, Vach K, et al: Computerized optical impression making of edentulous jaws - An in vivo feasibility study. J Prosthodont Res. 2020;64:444-53.

30. Gan N, Xiong Y, Jiao T: Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLoS One. 2016;11:e0158800.

31. Deferm JT, Schreurs R, Baan F, et al: Validation of 3D documentation of palatal soft tissue shape, color, and irregularity with intraoral scanning. Clin Oral Investig. 2018;22:1303-9.

32. Chebib N, Kalberer N, Srinivasan M, et al: Edentulous jaw impression techniques: An in vivo comparison of trueness. J Prosthet Dent. 2019;121:623-30.

Osnes CA, Wu JH, Venezia P, et al: Full arch precision of six intraoral scanners in vitro. J
 Prosthodont Res. 2020;64:6-11.
 Zarone F, Ruggiero G, Ferrari M, et al: Comparison of different intraoral scanning techniques

34. Zarone F, Ruggiero G, Ferrari M, et al: Comparison of different intraoral scanning techniques on the completely edentulous maxilla: An in vitro 3-dimensional comparative analysis. J Prosthet Dent. 2020.

35. Darvell BW, Clark RK: The physical mechanisms of complete denture retention. Br Dent J. 2000;189:248-52.

36. Fueki K, Yoshida E, Igarashi Y: A structural equation model relating objective and subjective masticatory function and oral health-related quality of life in patients with removable partial dentures. J Oral Rehabil. 2011;38:86-94.

37. Ohkubo C, Park EJ, Kim TH, et al: Digital Relief of the Mental Foramen for a CAD/CAM-Fabricated Mandibular Denture. J Prosthodont. 2018;27:189-92.

38. Kuhr F, Schmidt A, Rehmann P, et al: A new method for assessing the accuracy of full arch impressions in patients. J Dent. 2016;55:68-74.

Table 1: Search strategy

Search strategy	Query
Population #1	(((("mouth, edentulous"[MeSH Terms] OR ("edentulous"[All Fields]) OR "edentulous mouth"[All Fields]))) OR (partially[All Fields] AND ("jaw, edentulous"[MeSH Terms] OR "edentulous jaw"[All Fields] OR))) OR ("palate"[MeSH Terms] OR "palate"[All Fields])) OR "edentulous ridge"
Intervention #2	((((("intraoral scanner") OR "digital impression") OR "optical scanner") OR "3D surface scanning") OR "direct capturing") OR intraoral scan
Comparison #3	(((("dental impression technique"[MeSH Terms] OR ("dental"[All Fields] AND "impression"[All Fields] AND "technique"[All Fields]) OR "dental impression technique"[All Fields])) OR "Conventional impression ") OR "Conventional technique ") OR (("silicon"[MeSH Terms] OR "silicon"[All Fields]) AND impression[All Fields])
Outcome #4	((((((("data accuracy"[MeSH Terms]) OR "dimensional measurement accuracy"[MeSH Terms]) OR accuracy) OR precision) OR reliability) OR trueness) OR repeatability)) OR "3D comparison"

 Table 2: Quality Assessment of Diagnostic Accuracy Studies (QUADAS) guideline and scoring
 system

		5,5tem		
U				Score
	QU	ADAS questions	Yes (1)	No/clear (0)
	1	Was the spectrum of the edentulous mucosa representative of what will be diagnosed in practice?		
+	2	Were selection criteria clearly described?		
	3	Is the reference method likely to correctly classify the target condition?		
	4	Is the time period between the reference method and test method short enough to be reasonably sure that the target condition did not change between the two tests?		
	5	Did the whole sample or a random selection of the sample, received verification using a reference standard of diagnosis?		
	6	Did the denture related mucosa received the same reference method regardless of the test method results?		
+	7	Was the reference method independent of the test method (i.e. the test method did not form part of the reference standard)?		
	8	Was the execution of the test method described in sufficient details to permit replication of the test?		
	9	Was the execution of the reference method described in sufficient details to permit its replication?		
	10	Were the test results interpreted without knowledge of the results of the reference method?		
	11	Were the reference method results interpreted without knowledge of the results of the test method?		
	12	Were uninterpretable/intermediate test results reported?		
	13	Were withdrawal from the study explained?		
	L	1	I	

Table 3: Complete edentulous arch studies

	C
•	
1	5
	Ō
	Q
	Ö

Author and year	Stud Y quali ty scor e (0- 13)	Sample size	Scanned surface	Evaluated area (region of interest)	Scanner system	Scanning strategy	Accuracy evaluation method	Reported result
Patzelt et al, 2013 ²¹		5 per method (one experien ced operator)	Edentulou s maxilla and mandible study models with soft artificial mucosa	Whole edentulous jaws being cropped proximal to the vestibule	Referenc e data: Laborato ry scanner: Activity 101 (smart optics) IOS: 1. CB (powder required) 2. LC(pow der required) 3. IT 4. ZFX	Maxilla: from distobuccal areas, following the crest to the opposite side and then closing the palatal gaps in zig-zag motion over the palate. Mandible: from distal area of one side, following the jaw crest to the opposite side in a zig-zag manner.	Superimpos ition against 3D model obtained from laboratory scanner to measure trueness. Superimpos ition of 3D dataset within each group to measure precision. Qualitative evaluation Aligning software: Geomagic qualify 2012 by best fit alignment. Mean absolute 3D deviations was reported.	Mean trueness (T) and precision (P) values: <i>Maxilla:</i> CB: (T)= 591.8 μ m, (P)= 332.4 μ m IT(3Shape file format): (T)= 144.2 μ m (P)= 178.5 μ m IT (Dental wings file format): (T)= 139.5 μ m (P)= 166.8 μ m LC: (T)= 52.9 μ m (P)= 30.8 μ m ZFX: (T)= 283.8 μ m (P)= 425.3 μ m <i>Mandible:</i> CB: (T)= 558.4 μ m (P)= 698.0

									μm
									IT (3Shape file format): (T)= 191.5 μm (P)= 197.9 μm
rtic									IT (Dental wings file format): (T)= 154.7 μm (P)= 217.3 μm
A									LC: (T)= 44.1 μm (P)= 21.6 μm ZFX: (T)=
50	D'Arie	12	1 per	1 Edentul	Whole	Referenc	From	Superimpos	253.8 μm (P)= 319.4 μm
Accepte	D'Arie nzo et al, 2018 ²⁵	12	l per method (4 Participa nts) (one experien ced operator)	1.Edentul ous maxilla 2. stone model obtained from alginate impressio n in metal impressio n tray	Whole edentulous jaws being cropped proximal to the vestibule	Referenc e data: Laborato ry scanner: D1000 (3Shape) IOS: TR3	From distobuccal areas of the first quadrant, at the level of the tuber, followed to the crest to the opposite side, passing through the retroinciso r papilla, and finally closed the palatal gaps by moving the scanner head in a zig-zag	Superimpos ition against 3D model obtained from laboratory scanner to measure trueness. Qualitative evaluation Aligning software: 3DReshaper by best fit alignment. The mean 3D differences was reported.	Mean 3D differences for each patient: 219 μm 239 μm 246 μm 347 μm.

							manner.		
Accepted Article	Jung et al, 2019 ²⁷	10	1 per method (5 Participa nts) (one experien ced operator)	1.Edentul ous maxilla and mandible 2. stone model obtained from border molded PVS impressio n (Control) (CI)	Maxilla: Midpalatal raphe, Hard palate, Residual ridge, Soft palate Mandible: Residual ridge, Buccal shelf	Referenc e data: Laborato ry scanner: D700 (3Shape) IOS: CS3500	Maxilla: from left to right tuberosity along the posterior palatal seal, next the vestibule and palate were sequentiall y scanned to overlap with the scanned residual ridge Mandible: from retromolar pad on one side to the contralater al side along the residual ridge followed by buccal vestibular scanning.	Superimpos ition against 3D model obtained from laboratory scanner to measure trueness. Qualitative evaluation Aligning software: Geomagic control 2014 by best fit alignment Mean 3D difference was reported.	Mean 3D differences : Maxilla: Soft palate: 0.86 mm Hard palate: 0.18 mm Residual ridge: 0.05 mm Midpalatal raphe: 0.05 mm Midpalatal raphe: 0.05 mm Midpalatal raphe: 0.05 mm Auerage difference: Mandible: -0.27 mm Maxilla: 0.03 mm
	Chebib et al, 2019 ³²	9	1 per method (12 Participa nts) (one	1. Edentulou s maxilla 2. Border	Total impression surface and five region	Referenc e data: Laborato ry scanner:	Not reported (According to the manufactur	Superimpos ition against 3D model of the control	RMS values <i>Total</i> <i>impression</i>

d Article			experien ced operator)	molded ZOE impressio n (Control) 3. ALG impressio n 4. PVS impressio n 5. PVS impressio n relined with ZOE (PVSM)	of interest: Midpalatal raphe Peripheral border Inner seal Residual ridge Posterior palatal seal area	Iscan D103i (Imetric) IOS: TR3	er's instruction)	group obtained from laboratory scanner to measure trueness. Qualitative evaluation Aligning software: Geomagic control X by best fit alignment Root mean square value was reported	surface: ALG: 1.23 mm PVS: 0.75 mm, PVSM: 0.75 mm TRI: 0.70 mm
Accepte	Braian et al, 2019 ¹⁶	9	15 per method (one experien ced operator)	CAD- CAM metal alloy (Remaniu m-Star- CL) model with five markers (<i>Descripti</i> <i>on:</i> airborne- particle abrasion for a non- reflective surface of a fully edentulou s mandibul ar ridge (E) and a fully dentate mandibul	Distance between five cylinders: Cross arch: P1-P2, P1- P3, P1-P4, P1-P5 Intercylindr ical: P1-P2, P2- P3, P3-P4, P4-P5	Referenc e data: Coordina tes measurin g machine IOS: 1.CO 2.IT Element 1 3.PE 4.CS360 0 5.TR3	From left distal site continued to distal right (According to the manufactur er's instruction for each scanner)	Measureme nt of the distance between markers in the dentate arch and the edentulous arch and comparison with the reference data as the true value.	For the intercylind rical data on the edentulous cast, the IOS devices presented trueness values ≤ 94 mm (except, CS 3600, P1-P2, -103μ m) and precision values ≤ 97 μ m. The trueness values for the cross- arch measureme

			ar arch (D))					nts on the edentulous cast were $\leq 193 \ \mu\text{m}$ and the precision values, $\leq 299 \ \mu\text{m}$ (except PE edentulous arch, P1- P5, 441 μm).
Osnes et al, 2020 ³³	10	5 per method (One experien ced operator)	Metal edentulou s maxillary model	Whole edentulous jaws cropped to retain the functional depth and width of the sulcus and to the post dam region.	IOS: 1.TD (powder required) 2.PE 3.CO 4. DW 5. TR3 6.AD	Not reported.	Superimpos ition of 3D datasets within each group to measure precision. Qualitative evaluation Aligning software: custom alignment software by generalized iterative closest point algorithm. Signed mean deviations and unsigned medians of the poorest 1% of the surface were reported.	The mean distance of the medians of the poorest fitting 1% : TD: 0.103 mm, PE: 0.53 mm, CO: 0.153 mm, DW: 0.452 mm, TR3: 0.092 mm, AD: 0.040 mm Signed mean deviations TD: 0.025 mm PE: 0.087mm CO: 0.032 mm DW: 0.097 mm TR3: 0.026 mm DW: 0.097 mm TR3: 0.026 mm

									mm
	Lo	9	1 per	1.Edentul	1. Whole	Referenc	Not	Superimpos	Mean
	Russo		method	ous	edentulous	e data:	reported	ition against	distance
	et al,		(10	maxilla	jaws	TR3	-	3D model	
	2020^{23}		Participa	and				obtained	Full
			nts) (one	mandible	2. Whole	IOS:		from IOS to	scans:
			experien	(Control)	edentulous	TR3		measure	Maxilla [.] -
			ced	2	jaws			trueness.	0.11 mm
			operator)	2. Polysulfid	peripheral			Qualitative	
				e e	borders			evaluation	Mandible:
				impressio	borders			evaluation	-0.26 mm
				n				Aligning	Tuimmad
								software:	scans.
								Geomagic	scuns.
								wrap 2017	Maxilla: -
								by best fit	0.03 mm
								alignment.	Mandihlar
								Mean 3D	0.02 mm
								distance	-0.02 mm
								between	
								two digital	
								models was	
								reported.	
	Hack et	12	3 per	1 Edentul	Whole	Referenc	Maxilla	Superimpos	The overall
	al	12	method		edentulous	e data:	from the	ition of 3D	mean
	2020^{29}		(29	Maxilla	iaws	Laborato	region of	model	difference
			Participa	and	(bearing	ry	the right	against each	
			nts- 27	mandible	area and	scanner:	tuberosity	other to	Stone
			maxilla-		periphery)	D700	continued	measure	model to
			5	2. border		(3Shape)	with a zig-	trueness.	IOS: 336.7
			mandible	molded			zag-	Quel's s'	μm (n= 32)
)	PV5		IUS: LC	manner in	Qualitative	Conventio
				n			anterior	evaluation	nal
				11			region.	Aligning	impression
				3. Stone			i nen, the	software:	to IOS:
				model			sound and	Geomagic	363.7 μm
٦				obtained			a scan of	qualify	(n= 24)
				from the			the	2013 by	Conventio
				impressio			anterior	best fit	nal
				n			vestibule	alignment.	impression
							was taken.	Mean 3D	to stone
							The scans	difference	model:
							were	were	272.1 μm
							automatica		•

							lly aligned,	reported	(n=29)
							fused, and		
							saved.		
							Mandible:		
							from the		
							right		
							retromolar		
							pad area		
							followed		
							the		
•							anatomy of		
i S							the lower		
							jaw in a		
							zig-zag-		
							manner to		
							the		
							opposing		
							site The		
							scans were		
1							scans were		
λ							saveu, an		
							scans of		
							the		
							vestibule		
							and		
							sublingual		
							areas were		
							added.		
	704000	12	10 por	Edontulou	Whole	Deference	Ducconclat	Suparimpos	Truenessi
	Zarone	12	10 per	Edentulou	whole	Reference a data	Buccopalat	superimpos	Trueness:
	et al,		(On a	S	i		al An altan i anna	2D ma dal	WT/BP:
	2020 ³⁴		(One	maxmary	Jaws (haaning	inetrolog	(DD):	SD model	48.7 um
			experien	models	(bearing	icai	(BP):	obtained	ioi, pill
			cea	(polyureth	area and	scanning		irom	WT/SS:
			operator)	ane resin)	periphery)	machine	from left	laboratory	65.9 μm
				(Descripti		(Atos	tuberosity	scanner to	·
				on:		Core 80;	across the	measure	WT/PB:
				presence		GOM)	ridge and	trueness.	109.7 μm
				of palatal		105.	then	Superimpos	
				rugae		103. тр2	towards	ition of 2D	ST/BP:
				(wrinkle		113	buccal	dataset	48.1 μm
				model),			vestibule	ualasel	CT/CC.
-				absence			continued	within each	51/55:
				of palatal			to palatal	group to	56.4 μm
				rugae			from the	measure	ST/PR·
				(smooth			posterior	precision.	61.1 µm
				model))			to anterior.	Qualitative	σι.ι μιπ
							a 1 .	evaluation	Precision:
							S-shaped	Cvaluation	
							technique	Aligning	WT/BP:
							(SS):	00	

This article is protected by copyright. All rights reserved.

				started in	software:	46.7 μm
				an S-shape	Geomagic	
				pattern	Control X	WT/SS:
				across the	by best fit	53.9 μm
				ridge and	alignment	WT/PB·00
				its buccal		W 1/1 D. 90
				and palatal	Mean 3D	μΠ
				slobs and	differences	ST/BP: 46
				then	were	μm
				toward	reported	
				remaining		ST/SS: 76
				palatal		μm
				area from		CTT/DD
				posterior		S1/PB:
				to anterior		52.9 μm
				D-1-4-1		
				Palatobucc		
				ai taabniqua		
				(DD),		
r				(FD). started		
				from left		
				tuberosity		
				across the		
				ridge and		
				then		
				towards		
				palatal		
				region in		
				an inverted		
				U-shape,		
				finished in		
				buccal		
				vestibule		
				at the side		
				of starting		
				point		

Table 4: Partially edentulous arch studies

		Study			Evaluat				
		auglit			ed area				
		quant							
	Auth	У			(region			_	
	or	score			ot			Accuracy	
Y	and	(0-	Sample	Scanned	interest	Scanner	Scanning	evaluation	Reported
	year	13)	size	surface)	system	strategy	method	result
		1.0	-		<u> </u>			~ · ·	
•	Kım et	10	5 per	Dental	Only 26	Referenc	Not	Superimposit	Trueness:
	al, 7^{26}		method	model with	mm of	e data:	reported	ion against	TR3. No
	2017		(one	hard	edentulo	Laborato	(According	3D model	marker
			operator)	artificial	us space	ry	to the	from	36.1
				mucosa	loft	Identico	manufacture	reference	Marker:
				(Descriptio n. Partially	quadrant	Hybrid	r's	scanner to	30.6
				edentulous	with	(Medit)	instruction)	measure	
				mandible:	presence	(incur)		trueness.	CS3500:
				(Cl III	and	IOS: 1.			No
				MOD 1-	absence	CS3500,		Superimposit	marker:
				missing	of an	2 CO		ion of 3D	38.8 Maulaan
				right	artificial	2.00		dataset	Marker:
				second	marker.	3. TR3		within each	20.7
				premolar,				group to	CO: No
				first molar				measure	marker:
_				and left				precision.	Not
				premolars				Aligning	obtained,
				and first				software:	Marker:
				molar)				Rapidform	31.8
								2006 by	Dracision
								three-point	
								registration	TR3: No
-								and fine	marker:
								registration	13.0
								Mean	Marker:
								discrepancy	9.2
								value was	C\$3500.
								reported.	C55500: No
								*	marker.
	N								43.6
	1								Marker:
									12.4
									CO: No
									marker:
									Not
									obtained,
									Marker:

									10.5
	Haya	9	5 per	1. Dental	1. Whole	Referenc	From left	Superimposit	Whole
	ma et		method	model with	model	e data	central	ion of	model:
	al,		(one	silicon		and	proceeded	digitized	Trueness:
	2018 ²⁸		experienc	artificial	2.	stone	to distal	stone model	
P			ed	mucosa	Mucosal	models:	area and	and digital	large
			operator)	(Descriptio	area only	Laborato	ended at the	data against	head: 105-
				n: Partially		ry	right central	3D ref model	108 µm,
				edentulous		scanner:	incisor by	obtained	am a 11
				mandible:		ARCTIC	moving to	from	sman bood: 115
				(Cl I-		A Auto	the right	laboratory	158 um
				bilateral		Scan,	dental arch.	scanner to	158 µm
×.				missing		(KaVo)		measure	conventio
				second		700		trueness.	nal
				premolar		IOS:		G	method:12
				and		CS3500		Superimposit	2-157 μm
	r			molars/ Cl		Large		ion of 3D	
	λ			III- left		head (1(y)12)		dataset	Precision:
				second		(16×12)		within each	1
				premolar		and		group to	large
				and first		small		measure	head: 100-
				molar))		(12×0)		precision.	114 μm,
				2 Stone		(12×9)		Oualitative	small
				2. Stolle				evaluation	head: 179-
				obtained					192 µm
				from PVS				Aligning	
				impression				software:	conventio
				with				Geomagic	nal
				selective				Studio 2014	method:77
				pressure				by best fit	-119 μm
P				technique.				alignment.	
								Madian of	Mucosai
								the root mean	area: Truonossi
								square	rueness:
								(RMS) value	large
								(RND) value	head: 54-
								was reported.	107 µm,
									• •
									small
									head: 76-
									180 µm
									aontranti-
									conventio
									nai method:12
									2_{152} µm
									2-152 μIII

									Precision:
tinla	してして								large head: 109- 121 μm, small head: 169- 215 μm conventio nal method:52 -90 μm
A nontad Ar	Lee et al, 2019 ²⁴	11	6 per method per model (one experienc ed operator)	Dental model with hard artificial mucosa (<i>Descriptio</i> <i>n:</i> Fully dentate maxilla (control), Partially edentulous maxilla: (1. Cl III- missing right second premolar and first molar/ 2. Cl III MOD 1- missing right second premolar and first molar/ 2. Cl III MOD 1- missing right second premolar and first molar/ 3. CL IV- missing incisors and right canine/ 4. Cl III	Complet e arch excludin g palatal area	IOS: 1. CS3600 2. i500	From second molar with the smaller edentulous side between the second molars following the manufacture rs' guideline.	Superimposit ion of 3D datasets within each group to measure precision. Qualitative evaluation Aligning software: Geomagic Control X by best fit alignment. Root mean square (RMS) value was reported.	CS3600 Control: 44.37 µm Case1: 49.57 µm Case2: 96.31 µm Case3: 85.59 µm Case4: 103.28 µm i500 Control: 52.30 µm Case1: 58.43 µm Case2: 100.22 µm Case3: 106.71 µm Case4: 115.66 µm

ticle	Table 5:	completely a	MOD 1- missing left second premolar, first molar and four incisors)) nd partially e	dentulous a	rch studies			
Autho and year	Study qualit y or score (0- 13)	Sample size	Scanned surface	Evaluate d area (region of interest)	Scanner system	Scanni ng strateg Y	Accuracy evaluation method	Reporte d result
	a 8	5 per model and per operator (5 experience d operators)	1. Dental model with silicon artificial mucosa mounted in a manikin with a face mask. (<i>Descriptio</i> <i>n:</i> Fully edentulous maxilla Partially edentulous mandible (Cl I- missing bilateral molars and left second premolar))	Three regions in maxilla: premolar, molar in coronal section, and midline in sagittal section Two regions in mandible: crest of the ridge on both sides in sagittal section	Reference data: Laborator y scanner: D900 (3Shape) IOS: TR2	Zig-zag manner	Superimposit ion against 3D model obtained from laboratory scanner to measure trueness. Aligning software: 3Shape CAD software by three points. Vertical maximum distance of the difference and the integral value were reported.	The means of five operator: Maximu m distance of the differenc e: Maxilla (premola r: 0.3 mm, molar: 0.18 mm, midline: 0.18 mm) Mandibl e: (right side: 0.05 mm, left side: 0.08 mm)

d A minla	Schimm	10	10 per	1. Dental	Extension	Reference	Not	Superimposit	The integral value : Maxilla: (premolar : 4.17 mm ² , molar:6. 82 mm ² , midline: 4.70 mm ²) Mandibl e: (right side: 0.78 mm ² , left side: 1.60 mm ²) Overall
vonto.	el et al, 2020 ²⁰		model and per operator (one experience d and one inexperienc ed operator)	model with silicon artificial mucosa mounted in a manikin with a face mask. (<i>Descriptio</i> <i>n:</i> Fully edentulous maxilla and mandible	of the future complete or partial removabl e prosthesis 2mm short of the mucobuc cal fold.	data: Industrial scanner: ATOS Capsule 200MV12 0, (GOM) IOS: PR	reported	ion against 3D model obtained from reference scanner to measure trueness. Superimposit ion of 3D dataset within each group to measure	median trueness: 24.2 µm Overall median precision : 18.3 µm
				Partially edentulous maxilla (Cl III MOD 2- missing bilateral first premolar and molar and four incisors) and mandible				precision. Qualitative evaluation Aligning software: GOM Inspect Professional by best fit alignment. Median of the absolute deviation was	

	Table 6:	Palatal area	(CI II MOD 2- missing right molars, le first molar and four incisors)) studies	ft r,			reported.	
Author and year	Stud y quali ty score (0- 13)	Sample size	Scanned surface	Evaluat ed area (region of interest)	Scanne r system	Scanning strategy	Accuracy evaluation method	Reported result
Gan et al, 2016 ³⁰	11	3 per participant (32 participant) (one experience d operator) and 1 reference model per participant	 Whole maxillary arch (natural dentition and palate) Stone models obtained from two- step putty- wash impressio n. 	1.Compl ete dental arch 2.Palatal soft tissue only(pala tal soft tissue beyond the second molars were excluded)	Referen ce data: Laborat ory scanner: D500 (3Shape) IOS: TR3	Palatal soft tissue: From palatal side of the central to the distal end of the second molar in a zig-zag manner.	Superimposi tion against 3D model obtained from laboratory scanner to measure trueness. Superimposi tion of 3D dataset within each group to measure precision. Qualitative evaluation Aligning software: Geomagic Studio 12 by	Palatal softissue:Trueness:130.54 μm(positivedeviations:185.84 μmandnegativedeviations:75.23 μm)Precision:55.26 μmFulldentition:Trueness:80.01 μm(positivedeviations:96.24 μmand

								deviation	59.52 µm
								was	
								analyzed.	
	Datama	11	1	1 Whale	Hand	Dafaman	Nat	Sumaninamagi	Tunonaga
	Deferm	11	1 per	1. whole	Hard palata	Referen	NOL	superimposi	I rueness:
	2018^{31}		operator	illaxillai y	(palatel	Ce uata. Laborat	reported	and al	Mean
	2016		(one	(noturol	(paiaiai soft	Laborat		obtained	absolute
			d and one	dentition	tissue	ory		from	distance
			inexperien	and	hevond	D500		laboratory	
			ced	nalate)	the	(3shape)		scanner to	Inexperienc
•			operator)	pulate)	second	(sonape)		measure	ed
			and 1	2.	molars	IOS:		trueness.	Operator:
			reference	irreversib	were	TR3			0.12 mm
			impression	le	excluded			Superimposi	Experience
			per	hydrocoll)			tion of 3D	d operator:
			participant	oid	*			dataset	0 14 mm
			(10	impressio				within each	0.1111111
			participant	n				group to	Absolute
)					measure	90th
								precision.	percentile
								Aligning	distance
<u>`</u> (software:	Inovnationa
								Maxilim by	ad
								the iterative	Operator:
								closest point	0.23 mm
4								algorithm.	0.23 1111
									Experience
								The absolute	d operator:
								average	0.28 mm
								distance and	D
	1)							absolute	Precision:
								90th	Mean
								distance was	absolute
								reported	distance:
								reponea.	0.08
									Absolute
									90th
	Τ'								percentile
									distance:
									0.10
	Mennito	8	5 per	1.Whole	1.	Referen	Not	Superimposi	Palatal soft
	et al,		method	Fresh	Complet	ce data:	reported	tion of	tissue:
	2019 ²²		(experienc	cadaver	e dental	Industria	-	digitized	
			ed	maxilla	arch	1		stone model	Trueness:
			operators	(natural	• ~	scanner:		and digital	Physical
			with each	dentition	2. Crown	ATOS		data against	·122 µm
			scanner)	with three	preparati	Capsule		3D ref	/TR3·134
									, 1103. 137

				prepared	on only	(GOM)		model	µm CO: not
				teeth and	2			obtained	reported
				palate)	3. Palatal	Stone		from	/CS3600:22
				1 /	soft	model:		reference	8 μm / IT
				2. stone	tissue	laborato		scanner to	Element 2:
				models	only	ry		measure	106 µm/ IT
				obtained		scanner:		trueness.	Element
				from two-		D800			1:139 µm/
				stage		(3Shape		Superimposi	PE: 150
				PVS)		tion of 3D	µm/ PS:
				impressio				dataset	236 μm
• •				n		IOS:		within each	·
						1 TD2		group to	Precision:
						1. 113		measure	
						2. CO		precision.	Physical:
									64 μm/
						3.		Qualitative	TR3: 109
	1'					CS3600		evaluation	μm/ CO:
						4 755		Aligning	not
						4. IT		software:	reported/
						Element		Geomagic	CS3600:11
						1		Control X by	$7 \mu\text{m}/11$
`(5 IT		best fit	Element 2: $(2 \times 1)^{-1}$
						Element		alignment.	$08 \mu m/11$
						2		8	$\frac{1}{2}$ $\frac{1}$
						-			/9 μm/ PE:
1						6. PE			8/μm/PS:
									/1 μIII
						7. PS			
	Zhongpe	12	1 per	1.Whole	1.	Ref	T1: from	Superimposi	Trueness
	ng et al,		method	maxillary	Dentition	data:	the palatal	tion against	
	2019 ¹⁸		(35	arch		Laborat	side of	3D model	T1:
			Participant	(natural		ory	upper	obtained	1 1 1 4
			s) (one	dentition	2. Palatal	scanner:	central	from	hard palate:
			experience	and	soft	R700	incisors to	laboratory	118.39 µm
			d operator)	palate)	tissue.	(3Shape	the distal	scanner to	Palatal
				• ~	Hard)	end of the	measure	vault:
				2. Stone	nalate	100	second	trueness.	127.35 μm
				models	parace	IOS:	molar in a	T . 1	·
V				obtained	-Palatal	1K3	zigzag	Intraclass	T2:
				Irom one-	vault		manner.	correlation	TT 1 1
	۲			step PVS			T2. f	coefficient	Hard palate:
				impressio			12: Irom	was	108.25 μm
				11.			palalal aida af	varify	Palatal
							side of	verny	vault:
							second	ty of the	118.17 um
							molar to	superimposit	
							nalatal	ion (Palatal	
							side of	level	
							5140 01	10,01	

			the	method) in	
			opposite	each region.	
AIUUU			arch, finishing the entire palatal scanning at the distal end of the second molars by continuou sly narrowing down the scope in an inverted U manner	Qualitative evaluation Aligning software: Rapidform by best fit algorithm Mean absolute deviation was reported.	

Figure 1: Flowchart of the literature search according to PRISMA guidelines