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Abstract
Purpose of Review This review aimed to illustrate the utility of additive manufacturing technologies for the fabrication of
polymer, metal, and ceramic components within the confines of their current and potential clinical applications in dentistry.
Recent Findings The literature reviewed on five additive manufacturing technologies, namely, vat-polymerization, material
jetting, material extrusion, powder-based fusion, and binder jetting, have been investigated in relevance to their dental applica-
tions. These technologies have the following existing or potential clinical applications: diagnostic and definitive casts, custom
trays, positioning guides for custom abutments, tooth preparation guides, interim dental restorations, all-ceramic crowns, metal
crowns and copings, silicone indices, occlusal devices, complete dentures, wax patterns for intra- and extra-coronal restorations,
surgical guides, removable partial dentures, and tooth- or implant-supported frameworks.
Summary Vat-polymerization, material jetting, and powder-based fusion technologies have existing clinical applications utiliz-
ing mainly polymers and metals. Additive manufacturing technologies need further development to be used with ceramic
materials for dental applications.
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Introduction

Introduction of digital technologies has changed the workflow
and thereby position of dental medicine, not only from clini-
cian’s but also from patient’s perspective. With the rising de-
mands for expedited dental treatments, practitioners and re-
searchers are relentlessly speculating to automate and stan-
dardize the processing of dental materials. This paradigm shift
has frequently been epitomized as “digital workflow” in den-
tistry that is based on three quintessential elements, namely,
data acquisition, data processing, and data manufacturing [1].

“Data acquisition” refers to the procurement of a digital
geometry of the intraoral tissues using an intraoral scanner
(IOS) and/or desktop digitizer. The digital image is used as a
substrate to consummate the virtual design of the restoration,
which is known as “data processing.” This virtual design is
labeled as the standard transformation language (STL) file.
“Data manufacturing” on the other hand is the final step in
the sequence of digital workflow, which involves transfigura-
tion of the virtual STL file to its physical form [2].

Data manufacturing can be accomplished through additive
or subtractive technologies. Subtractive manufacturing (SM)
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refers to computer-controlled milling of a solid block of a
given material for the fabrication of the desired restoration
[3] while additive manufacturing (AM) has been defined by
the American Society of Testing and Materials (ASTM) as
“the process of joining materials to make objects from 3D
model data, usually layer upon layer, as opposed to subtractive
manufacturing methodologies” [4•]. Even though SM has
been routinely used for the better part of at least the past two
decades for the fabrication of dental restorations, innate draw-
backs of this technology include raw material waste, untena-
ble wear of the milling tools, limited geometric reproducibil-
ity, and introduction of microcracks in the restoration. AM
however is a relatively novel technology that has begun to
sideline SM as the final step in digital workflow by virtue of
its versatility and customization possibility in manufacturing
complex geometries. The International Organization for
Standardization (ISO-TC 261/ISO 17296-2:2015) has classi-
fied AM into seven categories: vat-polymerization (VP), ma-
terial jetting (MJ), material extrusion (ME), binder jetting
(BJ), powder-based fusion (PBF), sheet lamination (SL), and
direct energy deposition (DEP) [5•]. In almost all disciplines
of dentistry, accuracy and trueness parameters are considered
to be of importance for the precision of the final product.

The accuracy of a 3D printer is defined by two parameters:
one being trueness and the other precision. Trueness is a mea-
sure of the dimensional disparity between the actual object
and its AM transcription, while precision refers to the dimen-
sional reproducibility or repeatability associated with multiple
iterations of an AM transcript. The limit to the smallest detail
which each technology can reproduce from the original STL
file is called “resolution.” For a 3D printer, each axis (x, y, and
z) is characterized by its own resolution in dots per square inch
(dpi), with the z-axis corresponding to layer thickness [6].

The objective of this review was to evaluate the current
AM technologies and possible clinical applications in context
of the manipulation of major classes of biomaterials used in
dentistry with a particular focus on metals, polymers, and
ceramics [7].

Vat-Polymerization

Four different vat-polymerization (VP) technologies can be
differentiated based on the light source employed for polymer-
ization: stereolithography (SLA), digital light processing
(DLP), liquid crystal display (LCD) based, also called day-
light polymer printing (DPP), and continuous liquid interface
production (CLIP).

SLA procedure uses a laser or an ultraviolet (UV) light to
fabricate the desired object layer by layer. The build platform
descends sequentially in a vat filled with photosensitive resin,
followed by exposure to the UV light in a pattern dictated by
the cross-sectional geometry of each layer of the object. In

order to bolster the object against the wiping action of the
build platform and gravity, support structures are used that
supplement the STL file prior to printing. The manufactured
part is then subjected to post-processing procedures, which
involves removal of excess resin and support structures,
followed by polymerization in an UV chamber.

Digital light processing (DLP) is based on vat-
polymerization technology but differs from the SLA on the
light source employed. DLP uses a digital micromirror device
(DMD) to reflect the light and polymerize each layer [8]
whereas LCD or DPP technology uses daylight projected onto
liquid crystal displays (LCD) in lieu of UV lasers or projectors
to polymerize the resin, which renders it inexpensive relative
to other technologies. Lastly, the CLIP technology uses a
DMD to polymerize the photosensitive resin through an oxy-
gen permeable windowmade of fluoropolymer that creates an
area called “dead zone,” where polymerization is inhibited
between the window and the polymerized part. CLIP builds
the 3D object in a continuous rather than a stepwise fashion,
hence expediting the production process [9].

In general, the resolution of a vat-polymerized printed ob-
ject is characterized by the properties of photosensitive resin
and processing parameters including light energy, wave-
length, speed of the printer, build platform positioning, slicer
software, printing parameters, support structures, printing an-
gulation, resin color, geometry of the object, and post-
processing procedures [10–12].

Polymer-Based Dental Applications of Vat-
Polymerization Technologies

VP technologies can be used to manufacture a wide array of
polymer-based devices in dentistry, namely, diagnostic casts,
custom trays, positioning guides for custom abutments, tooth
preparation guides, interim dental restorations, silicone indi-
ces, occlusal devices, complete dentures, patterns to cast or
press dental restorations, and surgical guides.

One of the simplest applications of VP technology proce-
dures was the production of diagnostic casts [8]. The accuracy
of the casts obtained using VP procedures has been investi-
gated in the dental literature reporting VP as a clinically ac-
ceptablemethod to obtain diagnostic casts [13••]. In an in vitro
study, Patzelt et al. [14] compared the accuracy of the milled
and AM diagnostic casts obtained from the digital scans per-
formed with a laboratory scanner and three different IOSs.
According to the results, SLA casts showed a higher accuracy
than their milled counterparts but the accuracy was still ques-
tionable at best for prosthodontic applications. Hazeveld et al.
[15] compared the accuracy of the diagnostic casts fabricated
using three AM technologies (DLP, MJ, and PBF) where the
results validated DLP as a clinically acceptable method for the
fabrication of orthodontic casts.
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VP technologies can also be used to manufacture definitive
casts for tooth- or implant-supported prostheses. However, the
dental literature pertaining to the accuracy of those casts is
insufficient. The accuracy of definitive casts fabricated using
this technology can be determined by evaluating spatial dis-
tortions of fixed reference points. Revilla-Leon et al. [16]
evaluated the dimensional distortion in implant replica posi-
tions within SLA, DLP, MJ, and conventionally processed
stone casts using a coordinate measuring machine (CMM).
According to this study, DLP did not perform significantly
better compared to conventional dental stone for cast
duplication.

The VP technology also allows for the fabrication of cus-
tom trays. Trays are crafted virtually on digital models using
dental or open-source computer-aided design (CAD) software
and subsequently constructed using a VP 3D printer. Digital
manipulation of a custom tray provides several advantages
such as control of the extensions of the tray, uniform thickness
of the impression material, and minimization of the manual
procedures. In some studies, VP technologies were utilized to
fabricate custom tray impressions making procedures in
implantology [17, 18].

A limited number of studies have investigated the bio-
compatibility, chemical composition, mechanical proper-
ties, and clinical behavior of VP technologies for the fab-
rication of provisional restorations [19–23, 24•]. Tahayeri
et al. [25] reported that SLA AM provisional restorations
showed comparable mechanical properties to their conven-
tionally processed equivalents, which were considered ad-
equate for intraoral use. Furthermore, Ahn et al. [26] found
significantly higher wear resistance for SLA and DLP pro-
visional restorations in contrast to the conventionally proc-
essed resin. In another investigation by Cho et al. [27],
similar trends were observed in that fracture load and flex-
ural strength of SLA- and DLP-processed interim restora-
tions were comparable to those of milled and convention-
ally processed ones. Alharbi et al. [28••] evaluated the ef-
fect of the build-up orientation on the mechanical proper-
ties of cylinder-shaped hybrid composite resin printed
specimens where vertically printed specimens with the
layers oriented perpendicular to the load direction showed
significantly higher compressive strength than horizontally
printed specimens with the layers oriented parallel to load
direction.

VP silicone indices have been utilized to run interference
for diagnostic purposes in trial restorations, direct composite
restorations, and interim restorations [29, 30]. Unlike conven-
tionally processed indices, SLA indices mitigate chairside
time by eliminating the need for manual diagnostic waxing
and allowing for a precise intraoral translation of the digitally
configured build-up [31]. Furthermore, VP processing of sil-
icone indices is more cost-efficient than the conventional pro-
cedures [32].

Also, several studies investigated VP technologies for the
fabrication of occlusal devices [33–36]. Digital design and
AM technologies optimize the fabrication of occlusal devices
by circumventing manual labor associated with the process.
[37]. A number of studies have reported that AM occlusal
guard materials demonstrate comparable properties compared
to their conventionally processed counterparts [34–36]; how-
ever, according to a study by Lutz et al. [38], DLP-printed
occlusal devices demonstrate lower wear and fracture resis-
tance than milled and conventionally processed devices.
Contrarily, the results of an investigation by Prpic et al. [39]
indicated that mechanical properties of an occlusal device
were a function of material as opposed to the technology used.
Further preclinical and clinical studies are recommended to
evaluate the behavior of those AM occlusal devices.

VP procedures have also been used as a tool for fabricating
removable and complete dentures [40–42] which involves in-
dividual printing and subsequent assemblage of denture base
and teeth [43, 44]. The denture teeth produced using VP have
demonstrated adequate fracture resistance to be used as com-
plete denture components [45]. Moreover, SLA demonstrated
a higher overall manufacturing accuracy than injection-
molded denture bases [46]. However, the surface finish
reproduced via injection molding supersedes milling or print-
ing, which coupled along with a dearth of clinical trials raising
qualms about this proof of concept [47]. Further studies are
recommended to evaluate the mechanical properties and long-
term behavior of the AM complete dentures.

The VP technology has additionally been investigated to
produce wax patterns to obtain cast metal frameworks, tooth-
supported prostheses, frameworks for removable partial den-
ture (RPD), and pressed ceramic restorations [48–50]. AM is
better suited than SM for the fabrication of complex non-
uniform geometries, which are highly typical of RPD frame-
works. Digital RPD frameworks are designed in CAD soft-
ware using 3D model data derived from an intraoral or labo-
ratory scan of stone cast. Thereafter, the framework is printed
as wax or plastic sacrificial pattern, which is then invested and
casted in metal. In this regard, Williams et al. [50] virtually
designed an RPD framework on an electronically surveyed
cast and utilized SLA for printing the sacrificial RPD frame-
work in plastic.

CAD software can also be used for digital waxing of pat-
terns to fabricate casted and pressed dental restorations. The
patterns are printed in wax, invested, and cast in metal or
pressed in lithium disilicate ceramic. Studies have investigated
the accuracy of final restorations derived from AM patterns
[48, 49]. Accuracy of the AM pattern was analyzed by eval-
uating the gap between processed final restoration and pre-
pared tooth or model. Fathi et al. [47] evaluated the marginal
and internal discrepancies in pressed lithium disilicate crowns
fabricated using handcrafted, milled, and printed wax patterns.
Accordingly, crowns fabricated using AM wax patterns
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demonstrated a clinically acceptable and superior fit than the
ones fabricated using milled or handmade wax patterns [48].
These results are coherent with the outcomes of studies con-
ducted by Mai et al. and Kim et al. [51, 52].

In the field of surgery, VP has been used for automatized
production of surgical guides [53–57]. Digital casts and cone-
beam computerized tomography (CBCT) data have proven to
be reliable substrates for virtual fabrication and subsequent
AM of surgical guides. Giacomo et al. [53] used SLA printing
for fabricating surgical guides, speculatively suggesting it as a
useful tool for manufacturing guides and placing implants,
contingent upon further clinical studies. Since then, however,
several studies have achieved promising results within this
domain. Sarment et al. [55] reported improved implant place-
ment with SLA AM guides designed using CBCT data.
Additionally, Özan et al. [56] analyzed the angular deviations
in implant placement with tooth- and mucosa-supported SLA
guides. According to this study, SLA guides obtained from
CBCT data were considered to facilitate reliable implant
placement using tooth-supported guides. On the other hand,
controversial results from the investigation of Reyes et al. [54]
reported better fit for conventionally processed surgical guides
and among the SLA guides, the ones fabricated using an op-
tical scan as a substrate apparently demonstrated a better fit
than CBCT-configured guides.

Ceramic-Based Dental Applications Using Vat-
Polymerization Technologies

VP procedures for processing dental ceramics involve two
additional steps where the first step involves thermal treatment
for the removal of organic binders, and the second step is the
high temperature sintering for densification of the ceramic.
Dehurtevent et al. [58••] studied the feasibility of alumina
slurries with 75% and 80% dry matter contents for SLA and
demonstrated the fabrication of a maxillary premolar ceramic
crown using alumina slurry with 80% dry matter content and
large sized (1.56 ± 0.04 μm) particles. While in one study
SLA-manufactured ceramics exhibited higher fracture tough-
ness than their dry pressed analogues [59], Zandinejad et al.
[60] found no significant differences in fracture resistance of
milled and SLA zirconia crowns. In terms of marginal and
internal fit however, Revilla-Leon et al. [50] reported clinical-
ly acceptable values for SLA-manufactured ceramic crowns.

In addition to ceramic crowns, SLA has been used to print
zirconia implants with great dimensional accuracy [56].
Implant specimens manufactured at a 0° angulation demon-
strated significantly higher characteristic strength than the
ones produced at a 45° or 90° angulation. However, micro-
structural analysis of the specimens revealed substantial po-
rosities and cracks, which entails the pursuit of concrete evi-
dence before the technology can make a transition into clinical
practice [61].

Material Jetting

Material jetting (MJ) works similarly to ink jet printing
but in contrast to single-layer printing, the building tray
descends sequentially with the printing and polymeriza-
tion of each successive layer of the liquid photopolymer,
eventually generating the 3D object. Material droplets are
selectively deposited by different nozzles moving in the x-
y-axis onto the building platform that traverses in the z-
axis. The main advantages of this technique are high pre-
cision, low material waste, and ability to print multiple
materials in different colors since each nozzle may contain
a different resin [62–64].

Dental Applications Using MJ Technologies

There is a significant overlap in the clinical applications
of MJ and SLA with respect to the fabrication of
polymer-based appliances and prostheses. Even though
MJ can print objects in multiple colors or materials, its
application is limited to resins that are dispensable as
inks. In fact, VP technologies are more frequently used
than MJ technologies. Similar to VP, MJ can be used
for printing diagnostic casts and using digitized 3D
model data for the fabrication of custom trays, position-
ing guides for custom abutments, tooth preparation
guides, provisional dental restorations, silicone indexes,
occlusal devices, complete dentures, patterns to cast or
press dental restorations, and surgical guides can be
manufactured.

In the field of ceramics, Ebert et al. [65] used zirconia
suspension as a substrate for direct inkjet printing of a ceramic
crown where the crown was printed as a dense green body
which was subjected to debinding and subsequent sintering.
According to this study, the mechanical properties of direct
inkjet AM zirconia specimens were not significantly different
compared to their milled equivalents. A similar study revealed
that direct inkjet AM zirconia specimens had a higher flexural
strength than their slip cast counterparts [66].

Material Extrusion

ME, also known as fused deposition modeling (FDM), uses
thermoplastic polymers that are extruded from the heated noz-
zle of the printer to build the 3D object layer by layer onto a
building platform that moves in the z-axis. Due to its low cost,
ME is one of the most widely used 3D printing technologies.
However, the surface finish and final quality of the AM prod-
uct are inferior compared to other technologies [67]. One in-
teresting modified version of ME is robocasting which in-
volves automatized extrusion of a pseudoplastic material from
the nozzle [68].
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Dental Applications Using ME Technologies

Even though ME can be used to process polymers, the accu-
racy and surface roughness finish obtained is inferior com-
pared to VP and MJ technologies. However, robocasting
ME technology for the fabrication of ceramic dental crowns
[5•] may present potential use in the future. Yet, factors affect-
ing robocasting of green ceramic objects such as critical noz-
zle height, pH, and viscosity of the ceramic slurry have to be
adjusted [69, 70]. Wang et al. [71] investigated these process-
ing parameters and manipulated them for robocasting porce-
lain crowns. The surface finish of AM crowns fell within the
clinically acceptable range of 20 and 50 μm. Likewise, Silva
et al. [72] utilized a similar technique for the fabrication of
zirconia copings with similar results.

Powder-Based Fusion

Powder-based fusion (PBF) technologies utilize powdered
substrates that are spread onto the building platform in
layering fashion with the help of roller blades. Confirming
to the prescribed cross-sectional geometry, each layer is selec-
tively fused prior to the sequential addition of the next one.
Three types of PBF technologies are currently available: se-
lective laser melting (SLM), selective laser sintering (SLS),
and electron beam melting (EBM) [73•, 74]. Among these,
SLS uses a high-powered laser beam (Na:YAG) that heats
the powder in a sealed chamber to a temperature just below
the melting point [75]. This results in partial melting and fu-
sion of powder particles layer by layer [76]. SLM is similar to
SLS, except for the fact that it heats the powder to its melting
temperature, resulting in complete fusion of the powder parti-
cles. EBM uses a high-energy electron beam in a noble gas
environment like argon. A tungsten filament (cathode) is then
heated to a temperature of 3000 °C to emit electrons where the
anode causes an acceleration of the electron beam, directed
towards the powdered metal with the help of magnetic coils.
Collision of high-energy electrons with the powdered metal
transforms their kinetic energy to heat which is responsible for
the fusion ofmetal powder. For thermal stability and reduction
of internal stresses, a temperature of 700 °C is maintained
within the inert chamber [77, 78].

Dental Applications Using PBF Technologies

PBF technologies can be harnessed for the fabrication of co-
balt chromium (Co-Cr) and titanium (Ti) metal frameworks
for removable partial dentures (RPDs) and tooth- or implant-
supported fixed dental prostheses. Furthermore, PBF has also
been investigated in bench-top studies for the fabrication of
ceramic components in dentistry.

Studies that have used PBF technologies for the fabrication
of Co-Cr frameworks have investigated their accuracy and
bond strength to ceramics. Accuracy of PBF as a manufactur-
ing technique is extrapolated from gap measurements between
the metal framework and the prepared abutment. In this re-
gard, Huang et al. [79] evaluated the marginal and internal fit
of metal ceramic crowns fabricated using conventional lost
wax technique and SLM where SLM Co-Cr metal ceramic
crowns revealed better marginal fit than their conventionally
fabricated analogues. The results were confirmed in a subse-
quent study [80]. As for the ceramic bond strength, no signif-
icant difference was reported between SLM and convention-
ally processed specimens [81, 82].

SLS has also been investigated for producing RPD
frameworks. According to one study, SLS is a more pre-
cise technique that can produce RPDs with better me-
chanical properties than the conventional technique
[83]. A clinical study has shown that the production of
RPDs with laser sintering may lead to greater patient
satisfaction [84], but a randomized study with a longer
follow-up time is still needed to corroborate this procla-
mation. Other laboratory and clinical studies have evalu-
ated metal structures of RPD processed by SLS and SLM
[83–85] where mainly Co-Cr or Ti (Ti6Al4V) alloys
were studied. One study focused on the adaptation of
four types of RPD and their results showed that SLS
achieved an acceptable fit for all types of prostheses.
However, long-span prostheses and a large number of
retainers processed by the conventional casting technique
still demonstrated a better accuracy than those printed by
SLS [85].

SLM and EBM have also been investigated for the fabri-
cation of Co-Cr and Ti frameworks for implant-supported
fixed dental prosthesis. Accuracy of such frameworks has
been analyzed by various reports in the literature. Akcin
et al. [86] investigated the fit of multi-unit Co-Cr frameworks
fabricated using SLM, milling, and lost wax methods. The
study revealed lowest marginal gap values for 3- and 4-unit
SLM frameworks coupled with the highest values in the oc-
clusal region of 5-unit SLM frameworks. Revilla-Leon et al.
[87] reported a clinically acceptable implant-abutment dis-
crepancy for SLM-manufactured complete-arch Co-Cr im-
plant-supported frameworks measured using a coordinate
measuring machine (CMM). Similar results have been report-
ed for SLM- and EBM-manufactured full-arch implant-
supported Ti frameworks [74].

For processing dental ceramics, SLS has been tried [5•],
but owing to their high sintering temperature, direct SLA
complicates the production of ceramic objects to their full
density [88]. Indirect SLA is a practical approach for the
manipulation of dental ceramics which involves the pro-
duction of green ceramic object hybridized with polymeric
binders [89].
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Binder Jetting

Binder jetting (BJ) is a technology that was in fact inspired by
ink jet printers. In this process, a powdered substrate is depos-
ited onto a building platform in layers, which are subjected to
selective deposition of binder droplets from the nozzle. In
order to polymerize the binder, the printed structure is placed
in a furnace. If the printed material is metal or ceramic, it needs
to undergo an additional step of heat treatment or sintering,
respectively [90].

Dental Applications Using BJ Technologies

A limited number of studies are available with this technolo-
gy, one of which investigated the technology for the fabrica-
tion of green ceramic objects and manipulated the processing
parameters for the fabrication of porcelain crowns [91].

Limitations and Future Perspectives

Based on the current literature, it could be stated that AM has
proven its potential on several fronts and withstood the test of
time in dental industry. However, the conclusions extrapolat-
ed from these studies should be considered with caution, es-
pecially in regard to high standard deviations, low power, and
low number of operators involved in some studies. Since most
of them are cross-sectional snapshots of bench-top investiga-
tions, the evidence substantiating the notion of AM integration
into clinical practice remains inconclusive in particular for
accuracy, trueness, and gap measurements.

It could however be expected that AM combined with
digital imaging technologies will have large implications
in dentistry. The versatility of this technology makes it
an ideal fit for the field of dentistry, which is known for
its creativity and artistic aspects. However, cost of this
technology and technical limitations for dental applica-
tions are thwarting its commercialization in the field
dental medicine. Future research and development in
the technology might help overcome the limitations of
this technology, leading to widespread approbation and a
possible diminution in the cost of its dental applications
using metals, polymers, and ceramics.
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